It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences. Fair ML has largely focused on the protection of single attributes in the simpler setting where both attributes and target outcomes are binary. However, the practical application in many a real-world problem entails the simultaneous protection of multiple sensitive attributes, which are often not simply binary, but continuous or categorical. To address this more challenging task, we introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces. This leads to two practical tools: first, the FairCOCCO Score, a normalised metric that can quantify fairness in settings with single or multiple sensitive attributes of arbitrary type; and second, a subsequent regularisation term that can be incorporated into arbitrary learning objectives to obtain fair predictors. These contributions address crucial gaps in the algorithmic fairness literature, and we empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
translated by 谷歌翻译
不确定性量化(UQ)对于创建值得信赖的机器学习模型至关重要。近年来,UQ方法急剧上升,可以标记可疑的例子,但是,通常不清楚这些方法确切地识别出什么。在这项工作中,我们提出了一种假设轻型方法来解释UQ模型本身。我们介绍了混淆密度矩阵 - 基于内核的错误分类密度的近似 - 并使用它将给定UQ方法识别的可疑示例分类为三类:分布外(OOD)示例,边界(BND)(BND)示例和较高分布错误分类(IDM)地区的示例。通过广泛的实验,我们阐明了现有的UQ方法,并表明了模型之间不确定性的原因有所不同。此外,我们展示了建议的框架如何利用分类的示例来提高预测性能。
translated by 谷歌翻译
机器学习模型被批评反映了培训数据中的不公平偏见。我们通过直接引入公平的学习算法来解决这一目标,而不是通过介绍公平的学习算法来解决公平的合成数据,使任何下游学习者都是公平的。从不公平数据生成公平的合成数据 - 同时对潜在的数据生成过程(DGP)留下真实 - 是非微不足道的。在本文中,我们引入了Decaf:用于表格数据的GaN的公平合成数据发生器。通过Decaf,我们将DGP显式作为发电机的输入层中的结构因果模型嵌入,允许在其因果父母上重建每个变量。此过程启用推理时间扩大,其中可以策略性地删除偏置边缘以满足用户定义的公平要求。 Decaf框架是多功能的,与几个公平的定义兼容。在我们的实验中,我们表明Decaf成功地消除了不希望的偏见和 - 与现有方法相比 - 能够产生高质量的合成数据。此外,我们为发电机的收敛和下游模型的公平提供理论担保。
translated by 谷歌翻译
为生成模型设计域和模型不合稳定的评估指标是一个重要且尚未解决的问题。大多数仅根据图像合成设置量身定制的指标表现出有限的能力,可以诊断跨更广泛的应用域的生成模型的不同模式。在本文中,我们介绍了三维评估度量标准($ \ alpha $ - precision,$ \ beta $ - recall,autherticity),其特征是任何生成模型中任何生成模型的保真度,多样性和概括性的表征。我们的度量标准通过精确重新分析统一统计差异度量,从而实现了模型保真度和多样性的样本和分布级诊断。我们将概括作为额外的独立维度(对忠诚度多样性权衡取舍),该概括量化了模型复制培训数据的程度 - 在对敏感数据建模具有隐私要求的敏感数据时,这是至关重要的绩效指标。这三个度量组件对应于(可解释的)概率数量,并通过样品级二进制分类估算。我们指标的样本级别的性质激发了一种新颖的用例,我们称之为模型审核,其中我们判断(Black-Box)模型生成的单个样品的质量,丢弃了低质量样品,从而改善了整体模型性能事后方式。
translated by 谷歌翻译
跟踪湍流羽流以定位其源是一个复杂的控制问题,因为它需要多感觉集成,并且必须强大地间歇性气味,更改风向和可变羽流统计。这项任务是通过飞行昆虫进行常规进行的,通常是长途跋涉,以追求食物或配偶。在许多实验研究中已经详细研究了这种显着行为的几个方面。在这里,我们采用硅化方法互补,采用培训,利用加强学习培训,开发对支持羽流跟踪的行为和神经计算的综合了解。具体而言,我们使用深增强学习(DRL)来训练经常性神经网络(RNN)代理以定位模拟湍流羽毛的来源。有趣的是,代理人的紧急行为类似于飞行昆虫,而RNNS学会代表任务相关变量,例如自上次气味遭遇以来的头部方向和时间。我们的分析表明了一种有趣的实验可测试的假设,用于跟踪风向改变的羽毛 - 该试剂遵循局部羽状形状而不是电流风向。虽然反射短记忆行为足以跟踪恒定风中的羽毛,但更长的记忆时间表对于跟踪切换方向的羽毛是必不可少的。在神经动力学的水平下,RNNS的人口活动是低维度的,并且组织成不同的动态结构,与行为模块一些对应。我们的Silico方法提供了湍流羽流跟踪策略的关键直觉,并激励未来的目标实验和理论发展。
translated by 谷歌翻译
This article concerns Bayesian inference using deep linear networks with output dimension one. In the interpolating (zero noise) regime we show that with Gaussian weight priors and MSE negative log-likelihood loss both the predictive posterior and the Bayesian model evidence can be written in closed form in terms of a class of meromorphic special functions called Meijer-G functions. These results are non-asymptotic and hold for any training dataset, network depth, and hidden layer widths, giving exact solutions to Bayesian interpolation using a deep Gaussian process with a Euclidean covariance at each layer. Through novel asymptotic expansions of Meijer-G functions, a rich new picture of the role of depth emerges. Specifically, we find that the posteriors in deep linear networks with data-independent priors are the same as in shallow networks with evidence maximizing data-dependent priors. In this sense, deep linear networks make provably optimal predictions. We also prove that, starting from data-agnostic priors, Bayesian model evidence in wide networks is only maximized at infinite depth. This gives a principled reason to prefer deeper networks (at least in the linear case). Finally, our results show that with data-agnostic priors a novel notion of effective depth given by \[\#\text{hidden layers}\times\frac{\#\text{training data}}{\text{network width}}\] determines the Bayesian posterior in wide linear networks, giving rigorous new scaling laws for generalization error.
translated by 谷歌翻译
Vision-based tactile sensors have gained extensive attention in the robotics community. The sensors are highly expected to be capable of extracting contact information i.e. haptic information during in-hand manipulation. This nature of tactile sensors makes them a perfect match for haptic feedback applications. In this paper, we propose a contact force estimation method using the vision-based tactile sensor DIGIT, and apply it to a position-force teleoperation architecture for force feedback. The force estimation is done by building a depth map for DIGIT gel surface deformation measurement and applying a regression algorithm on estimated depth data and ground truth force data to get the depth-force relationship. The experiment is performed by constructing a grasping force feedback system with a haptic device as a leader robot and a parallel robot gripper as a follower robot, where the DIGIT sensor is attached to the tip of the robot gripper to estimate the contact force. The preliminary results show the capability of using the low-cost vision-based sensor for force feedback applications.
translated by 谷歌翻译
Deploying machine learning models in production may allow adversaries to infer sensitive information about training data. There is a vast literature analyzing different types of inference risks, ranging from membership inference to reconstruction attacks. Inspired by the success of games (i.e., probabilistic experiments) to study security properties in cryptography, some authors describe privacy inference risks in machine learning using a similar game-based style. However, adversary capabilities and goals are often stated in subtly different ways from one presentation to the other, which makes it hard to relate and compose results. In this paper, we present a game-based framework to systematize the body of knowledge on privacy inference risks in machine learning.
translated by 谷歌翻译
This paper presents a class of new fast non-trainable entropy-based confidence estimation methods for automatic speech recognition. We show how per-frame entropy values can be normalized and aggregated to obtain a confidence measure per unit and per word for Connectionist Temporal Classification (CTC) and Recurrent Neural Network Transducer (RNN-T) models. Proposed methods have similar computational complexity to the traditional method based on the maximum per-frame probability, but they are more adjustable, have a wider effective threshold range, and better push apart the confidence distributions of correct and incorrect words. We evaluate the proposed confidence measures on LibriSpeech test sets, and show that they are up to 2 and 4 times better than confidence estimation based on the maximum per-frame probability at detecting incorrect words for Conformer-CTC and Conformer-RNN-T models, respectively.
translated by 谷歌翻译
Training a neural network requires choosing a suitable learning rate, involving a trade-off between speed and effectiveness of convergence. While there has been considerable theoretical and empirical analysis of how large the learning rate can be, most prior work focuses only on late-stage training. In this work, we introduce the maximal initial learning rate $\eta^{\ast}$ - the largest learning rate at which a randomly initialized neural network can successfully begin training and achieve (at least) a given threshold accuracy. Using a simple approach to estimate $\eta^{\ast}$, we observe that in constant-width fully-connected ReLU networks, $\eta^{\ast}$ demonstrates different behavior to the maximum learning rate later in training. Specifically, we find that $\eta^{\ast}$ is well predicted as a power of $(\text{depth} \times \text{width})$, provided that (i) the width of the network is sufficiently large compared to the depth, and (ii) the input layer of the network is trained at a relatively small learning rate. We further analyze the relationship between $\eta^{\ast}$ and the sharpness $\lambda_{1}$ of the network at initialization, indicating that they are closely though not inversely related. We formally prove bounds for $\lambda_{1}$ in terms of $(\text{depth} \times \text{width})$ that align with our empirical results.
translated by 谷歌翻译